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ABSTRACT Single image super-resolution (SR) aims at reconstructing high-resolution (HR) images from
low-resolution (LR) ones. One of the most key issues is to recover finer image details of LR images. In this
paper, considering the importance of edge prior for image SR, we propose a dual-streams edge driven
encoder-decoder network (Dual-EEDN), which combines edge stream based encoder-decoder network
(edge-EDN) and color stream based encoder-decoder network (color-EDN) to reconstruct HR images with
more image details. Instead of utilizing two sub-networks to learn edge information and color image
contents respectively, a multitask learning framework is developed to jointly train edge-EDN and color-
EDN. Therefore, as the structure prior, the reconstructed HR edge maps are fused with learned features of
color stream to refine the HR color images. To reconstruct HR images with better visual quality, a total
loss function combining edge loss and color loss is designed to make an optimal trade-off between the
image fidelity and texture details. Our extensive benchmark evaluations demonstrate that our method for SR
performs better both on high objective quality and human visual perception compared with several state-of-
the-art SR methods.

INDEX TERMS Dual-streams, edge-driven, image super-resolution (SR), edge stream, color stream.

I. INTRODUCTION

S INGLE image super-resolution (SR) is a classic problem
in computer vision, which aims at reconstructing the cor-

responding high resolution (HR) images from observed low
resolution (LR) images. Since image SR can overcome the
limitations of image resolution in a small scale, it has been
widely used in many applications, such as medical image
analysis [1], video surveillance [2], and face hallucination
[3]– [4].

Since a multiplicity of methods could generate same LR
images from HR ones, most SR methods resolve the typically
ill-posed problem with various strong priors. Considering
that image patches are a set of data with multiview charac-
teristics and spatial organization, Yang et al. [5] propose a
dual-geometric neighbor embedding (DGNE) approach for
single image SR. In [6], a general framework is proposed
for “blind” super-resolution, which exploits the inherent
recurrence property of small patches across scales of LR
image. Wang et al. [8] introduce an additional edge constraint

to reduce the undesired artifacts brought by the traditional
interpolation algorithm. Zhang et al. [9] propose an image SR
method by learning both non-local and local regularization
priors from a given LR image. In order to achieve simple
and efficient performance for real-time SR applications, Li
et al. [10] propose an edge-directed interpolation algorithm
for natural images, which estimates the local covariance co-
efficients from an LR image and then uses these coefficients
to adapt the interpolation at an HR image. To deal with the
image blurring caused by fixed weights for interpolation, two
adaptive interpolation methods are proposed in [11]– [12].

In view of the well performance by using internal or
external data to guide image restoration, most state-of-the-art
methods adopt the example-based strategy, which learns the
correspondence between LR and HR image patches from a
huge database. In [13], based on the observation that patches
in a natural image redundantly recur many times inside the
image, Glasner et al. introduce a unified framework for
single image SR. In [14], Freedman et al. propose a high-
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quality and efficient single image upscaling technique which
follows a local self-similarity assumption on natural images
and extracts patches from extremely localized regions in
input images. By investigating the application of the clustered
sparse coding scheme into the SR problem, Yang et al. [15]
propose a multiple-geometric-dictionaries-based clustered
sparse coding scheme for image SR. Huang et al. [16] extend
the self-similarity based SR, which expands the internal patch
searching space by allowing geometric variations and incor-
porating additional affine transformations to accommodate
local shape variations. Timofte et al. [17] propose an adjusted
anchored neighborhood regression method, which solves the
problem of image upscaling in the form of single image SR
based on a dictionary of LR and HR exemplars. Different
from the existing methods that figure out the whole gradient
profile structure and locate the edge points, Song et al. [18]
propose a new approach which sharpens the gradient field
adaptively only based on the pixels in a small neighborhood.
Besides, there are still other external example-based methods
that focus on learning the dictionaries or mapping functions
[19]– [21].

Recently, deep convolutional neural networks (CNNs)
have shown great performance in computer vision field. Due
to the powerful learning ability, CNNs are widely used to
tackle the image restoration tasks, such as image denoising
[22], JPEG deblocking [23], and image inpainting [24]. By
directly learning an end-to-end mapping between LR and HR
images, Dong et al. [25] propose a deep CNN for single im-
age super-resolution (SRCNN), which achieves a well trade-
off between performance and speed. The authors further re-
design the SRCNN and introduce a compact hourglass-shape
structure (FSRCNN) for faster and better SR [26]. However,
the two models both fail to obtain superior performance in
very deep networks.

Inspired by VGG-net [27], Kim et al. [28] propose a 20-
layers CNN (VDSR) for multi-scale factor image SR, which
requires plenty of parameters. In [29], a deeply-recursive
convolutional network (DRCN) is presented to improve the
performance without introducing new parameters for addi-
tional convolutions. Zeng et al. [30] develop a data driven
model coupled deep autoencoder (SRCDA) for single image
SR, which learns the intrinsic representations of LR and
HR image patches and corresponds the LR representations
to their HR representations through a mapping function.
Motivated by the promising performance of autoencoder
based image denoising, Mao et al. [31] propose a very
deep full convolutional encoder-decoder framework for im-
age restoration, which symmetrically links the convolutional
and deconvolutional layers with skip connections. Although
the aforementioned CNN based models have achieved great
performance in accuracy and speed of single image SR,
they do not take the importance of natural image priors
into consideration in neural networks, which is important to
recover finer image details.

In addition, multitask learning is an approach to learn
tasks in parallel while using a shared representation, what

is learned for each task can help other tasks to be learned
better. In image SR, Liang et al. [32] present a multitask
learning framework based on the deep neural network for
image SR, which jointly considers the image SR process and
the image degeneration process. By sharing parameters be-
tween the two highly relevant tasks, the framework improves
the obtained neural network-based mapping model between
HR and LR patches. In [33], Zhao et al. propose a color-
depth conditional generative adversarial network (CDcGAN)
to concurrently resolve the problem of depth SR and color SR
in 3D videos, which adopts the mutual information of color
image and depth image to enhance each other in consider-
ation of the geometry structural dependency of color-depth
image in the same scene.

Considering that the edge knowledge can contribute to
producing sharp edges and compensate the high-frequency
details of reconstructed HR images, we embed the edge prior
into a deep network for image SR. Besides, in the light of the
performance of multitask learning framework in image SR,
we propose a dual-streams edge driven encoder-decoder net-
work (Dual-EEDN), which utilizes the edge prior and color
image contents simultaneously to reconstruct an HR image
with better human visual perception. In this work, we fully
utilize the HR edge information for single image SR, where
two types of image components are jointly learned, i.e., the
basic color image contents, and the extracted edge contents.
Instead of utilizing two sub-networks to learn edge contents
and color image contents respectively, the edge contents are
firstly pre-trained by edge streams based encoder-decoder
networks (edge-EDN), then color stream based encoder-
decoder network (color-EDN) is imposed to learn color im-
age contents. Furthermore, the reconstructed HR edge maps
are fused with color images which are predicted from color-
EDN to recover HR images with well image details. Due to
the performance degradation problem caused by very deep
networks, the skip connections in edge-EDN and color-EDN
are used for passing information from previous layers to
bottom layers, which also make train the deep network easier.
In order to reconstruct HR images with better visual quality,
we investigate a novel total loss function combining the edge
loss and color loss for the best trade-off to balance the color
image contents and edge contents. Extensive experiments
on four benchmark datasets demonstrate that Dual-EEDN
outperforms several state-of-the-art methods on both quan-
titative metrics and image details.

The remainder of this paper is organized as follows. Dual-
EEDN is presented in detail in Section II. The experimental
results and comparisons with other state-of-the-art methods
are demonstrated in Section III. The conclusion of this paper
and future research work are presented in Section IV.

II. PROPOSED METHOD
In this section, we present each component of our framework
in detail. As shown in Figure 1, our proposed Dual-EEDN
consists of five parts: a feature extraction network (FENet),
edge stream based encoder-decoder network (edge-EDN),
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FIGURE 1: The architecture of our dual-streams edge driven encoder-decoder network for single image super resolution. It consists of five parts: feature
extraction network (FENet) which includes three convolutional layers for feature extraction, edge-EDN and color-EDN are used for predicting the edge
details and color contents respectively, a reconstruction network (ReconNet) in each stream, and a fusion unit. (64, 3, 1) represent the 64 chanels and
3x3 kernel size with stride 1.

color stream based encoder-decoder network (color-EDN),
two reconstruction networks (ReconNet) in edge-EDN and
color-EDN, and a fusion unit for combining the edge contents
and color contents to jointly train our Dual-EEDN.

A. FEATURE EXTRACTION
In image SR, the degradation process of a LR image x from
the HR image x̃ can be formulated as

x = D(x̃) + n. (1)

where D(·) denotes the degradation function and n is an
additive noise. To reconstruct HR images while preserving
photo-realistic image details, we combine the benefits of
edge-directed SR method and CNN based SR method to
super-resolve the ill-posed problem. Different from most
CNN based methods directly predicting HR images from
LR images, the goal of our Dual-EEDN is to reconstruct
HR images based on two inputs, i.e., the LR color image
xc and the LR edge map xe. Given an input LR image xc,
we firstly employ an edge extractor such as Sobel operator,
Canny operator et al., to obtain the edge map as another input
xe. Then the predicted LR edge maps and color images are
delivered to the FENet for feature extraction,

fext(f0) =[x1e, x
1
c ]

f0 =[xe, xc]
(2)

where the input f0 to Dual-EEDN is a concatenation of the
LR image xe and xc. [x1e, x

1
c ] are the extracted features from

the LR input [xe, xc] by the FENet. And fext(·) denotes the
feature extraction function. Specifically, in FENet, the first
two layers with kernel size 3 × 3 are designed to capture
image information and achieve better efficiency. The third
layer with 1 × 1 kernel size is introduced as a bottleneck
layer, which is responsible to reduce the feature dimensions,
and thus to improve the computational efficiency. In our
proposed Dual-EEDN, as shown in Figure 1, to formulate
the SR problem by considering both the color image contents
and edge contents, the the extracted features [x1e, x

1
c ] are sent

to edge-EDN and color-EDN respectively.

B. EDGE STREAM BASED ENCODER-DECODER
NETWORK
We now present our edge-EDN, which is used to learn a di-
rect mapping from the LR patches of edge maps to the desired
HR patches. And then the reconstructed HR edge contents are
fused with the HR color contents predicted by color-EDN
to jointly recover HR images with well texture details. In
the encoder of edge-EDN, supposing m convolutional layers
are stacked to constantly learn local features and preserve
primary components of edge maps,

y1e = fme (fm−1
e (...f2e (f1e (x1e))...))

= fme (fm−1
e (...f2e (f1e (fext(xe)))...))

(3)

where fme (·) denotes the mapping function of themth convo-
lutional layer, and y1e denotes the learnt edge features through
the m convolutional layers. As well known, deconvolution
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FIGURE 2: The details of our two streams encoder-decoder networks: edge-EDN (top) and color-EDN (bottom). Each stream consists of m convolutional
layers (green) and m deconvolutional layers (light red). Skip connections are used for passing the previous states to current state and back-propagating
the gradients to bottom layers.

FIGURE 3: Example images with edge information. Top: original images;
bottom: extracted edge maps.

operation is usually used as upsampling, which can be re-
garded as an inverse process of convolution. In a sense,
supposing that the input stride is s, it can be found that
upsampling with factor s is the convolution operation with a
fractional input stride of 1/s. Therefore, the deconvolutional
layer is usually adopted to learn the upsampling kernels
with an output stride of s. Nevertheless, in edge-EDN, we
utilize the same number of deconvolutional layers as decoder
to compensate the information of edge maps and make the
feature maps reach to a finer level,

y2e = dme (dm−1
e (...d2e(d

1
e(y

1
e))...)) (4)

where dme denotes the deconvolution operation of the mth

deconvolutional layer, and y2e is the output of edge-EDN. To
keep the output size of encoder same with decoder, we use
the same kernel size 3 × 3 and 64 channels in both encoder
and decoder. At the end of edge-EDN, a convolutional layer
with kernel size 3× 3 is used as ReconNet to reconstruct HR
edge maps. The basic reconstruction of HR edge maps can be

represented as

x̂e = frecon(y2e) + xe

= frecon(dme (dm−1
e (...d2e(d

1
e(y

1
e))...))) + xe

(5)

where frecon(·) denotes the reconstruction function of Re-
conNet, and x̂e is the recovered HR edge map. However, with
the network depth increasing, adding more layers can cause
the input information and gradient information weaken,
which will make the performance of the model degrade
rapidly. In our framework, to solve this problem, as shown
in Figure 2, we not only adopt deconvolutional layers to
compensate the details but also employ skip connections
to correspond the convolutional features to deconvolutional
features to pass previous states to current state, which can en-
sure the sufficient information flow between the layers in the
network. Furthermore, the skip connections also contribute
to back-propagating the gradient to bottom layers that make
train very deep networks easier. For m convolutional layers
and deconvolutional layers in edge-EDN, the output after
mth skip connection Fme is

y2e =Fme (y1e)

=dme (dm−1
e (Fm−1

e (y1e))) + x1e

=dme (dm−1
e (...(d2e(F

1
e (x1e)))...)) + x1e

(6)

where F 1
e (x1e) = d1e(x

1
e)+fm−1

e (x1e). And the reconstructed
HR edge maps x̂e can be reformulated as

x̂e =frecon(y2e) + xe

=frecon(Fme (y1e)) + xe

=frecon(Fme (fext(xe))) + xe

(7)
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TABLE 1: Parameters Setting of Each Component in Our Framework

Componet FENet edge-EDN color-EDN ReconNet Fusion unit
layer-name 2-convs 1-conv 5-convs 5-deconvs 5-convs 5-deconvs conv conv

filter 3×3 1×1 3×3 3×3 3×3 3×3 3×3 1×1
stride 1 1 1 1 1 1 1 1

channel 64 64 64 64 64 64 1 1

(a) butterfly (b) barbara (c) comic

(d) flower (e) man (f) zebra

FIGURE 4: Visual comparisons on several images from the benchmark
datasets with the scaling factor 3. The green rectangles denote the results
produced by color-EDN, and the red rectangles are the corresponding
results produced by Dual-EEDN. The contents and boundary from Dual-
EEDN are much clearer and sharper, whereas the color-EDN gives blurry
boundary.

C. COLOR STREAM BASED ENCODER-DECODER
NETWORK

In our Dual-EDN, the networks of edge-EDN and color-EDN
share the same structure and parameter size. After extracting
features by FENet, the output x1c is sent to color-EDN. Like
edge-EDN, m convolutional layers are stacked to encode
the extracted color image features while preserving clearer
contents. We use y1c represents the feature maps learned from
the convolutional layers,

y1c = fmc (fm−1
c (...f1c (x1c)...))

= fmc (fm−1
c (...f1c (fext(xc))...))

(8)

where fmc (·) represents the mapping function of themth con-
volutional layer. Themth deconvolutional layer then decodes
the color image primary components to recover HR color
image contents with better performance. The mapping func-
tions of the stacked deconvolutional layers can be represented
as [d1c , d

2
c , ..., d

m−1
c , dmc ]. Skip connections are adopted to

pass previous information to current layer for addressing

the degradation problem caused by the deep network, which
can compensate the lost high-frequency information at latter
layers. Similar to edge-EDN, in color-EDN, the correspond-
ing relationship between the encoder and decoder can be
formulated as

y2c =Fmc (y1c )

=dmc (dm−1
c (...(d2c(F

1
c (x1c)))...)) + x1c

(9)

where F 1
c (x1c) = d1c(x

1
c) + fm−1

c (x1c). Finally, our color-
EDN uses a convolutional layer in ReconNet to reconstruct
HR color image content,

x̂c =frecon(y2c ) + xc

=frecon(Fmc (x1c)) + xc

=frecon(Fmc (fext(xc))) + xc

(10)

where x̂c is the reconstructed HR color image contents.

D. FUSION UNIT
To combine the benefits of multitask learning with edge prior
for jointly recovering HR images with more texture details,
a fusion unit is utilized to fuse the reconstructed HR edge
contents with the HR color image contents predicted by
color-EDN. It is worth emphasizing that we do not calculate
the predicting loss between the reconstructed HR color image
representations and the ground truth as edge-EDN. Specifi-
cally, a convolutional layer with kernel size 1× 1 is adopted
to learn the joint representations of the HR edge contents and
color contents to guide our proposed Dual-EEDN recovering
HR images with better structural details and sharper edges.
The fusion function can be represented as

x̂HR = fu(x̂e + x̂c) (11)

where x̂HR denotes the final HR images with better perfor-
mance by jointly learning of Dual-EEDN.

E. FRAMEWORK TRAINING
As mentioned above, our proposed Dual-EEDN is jointly
optimized from “ LR edge maps, LR images” to “HR edge
maps, HR images”. For convenience, we use [x̃e, x̃c] to
represent the ground truth of LR edge maps and LR images
respectively. Given a training set [xie, x

i
c, x̃

i
e, x̃

i
c], the object

of this work is to recover a HR image while preserving
high-frequency details. For weights initialization, we use
the method described in [34]. To make Dual-EEDN learn
more complicated features and ensure the nonlinear mapping,
the rectified linear unit (ReLU) [35] is used as the activa-
tion function. For each convolutional and deconvolutional
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(a) Ground Truth (PSNR/SSIM) (b) Bicubic (28.56/0.889) (c) A+ [17] (31.20/0.929) (d) SRF [20] (30.58/0.920)

(e) SelfEx [16] (31.45/0.932) (f) SRCNN [25] (30.89/0.923) (g) FSRCNN [26] (31.80/0.934) (h) Our (31.82/0.936)

FIGURE 5: Visual comparisons on the “woman” image from Set5 [38] for ×3 scale. The boundary of finger is sharper in our results, whereas other
methods produce blurry boundary.

TABLE 2: Quantitative Comparisons of PSNR (dB) and SSIM on Set5
and BSD100 with the Scaling Factor of 2, 3, 4. Text Indicates the Best
Performance.

Dataset Scale color-EDN Dual-EDN

Set5
2 36.93/0.955 37.13/0.958
3 33.04/0.914 33.25/0.917
4 30.57/0.865 30.92/0.876

BSD100
2 31.53/0.890 31.90/0.893
3 28.65/0.791 28.69/0.794
4 26.98/0.715 27.14/0.720

layer, we define a composite function of two consecutive
operations: convolution/deconvolution, followed by a ReLU
activation function. In our proposed model, the loss function
L1(xe,Θ1) of edge-EDN can be formulated as

L1(xe,Θ1) =
1

N

N∑
i=1

‖(f(xie,Θ1)− x̃ie)‖
2

=
1

N

N∑
i=1

‖(x̂ie − x̃ie)‖
2

(12)

where Θ1 represents the learning parameters of edge-

EDN, and f(xie,Θ1) represents the learning mapping func-
tion of edge-EDN. Here, x̂ie is the reconstructed HR edge
map. Furthermore, since we utilize a fusion unit to learn the
joint representations of HR edge contents and color contents,
the loss function between HR color images predicted by
Dual-EEDN and original HR images can be formulated as

L2(xc,Θ2) =
1

N

N∑
i=1

‖(f(xie, x
i
c,Θ2)− x̃ic)‖

2

=
1

N

N∑
i=1

‖fu(x̂ic, x̂
i
e)− x̃ic‖

2

=
1

N

N∑
i=1

‖x̂iHR − x̃ic‖
2

(13)

where Θ2 denotes the learning parameters of our model,
and f(xie, x

i
c,Θ2) is the joint learning function of our Dual-

EEDN. To achieve an optimal trade-off between the image
fidelity and image details, we develop a trade-off parameter
λ to balance the importance of color image contents and edge
details,
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(a) Ground truth (PSNR/SSIM) (b) Bicubic (21.92/0.819) (c) A+ [17] (23.60/0.869) (d) SRF [20] (23.26/0.871)

(e) SelfEx [16] (24.85/0.908) (f) SRCNN [25] (23.69/0.869) (g) FSRCNN [26] (24.71/0.885) (h) Our (25.56/0.919)

FIGURE 6: Visual comparisons on the “ppt3” image from Set14 [39] for ×4 scale. The text in Dual-EEDN is clearer and sharper, whereas in other methods,
the edges of character are blurry.

Ltotal(xe, xc,Θ1,Θ2)

=
1

N

N∑
i=1

‖(f(xic, x
i
e,Θ2)− x̃ic‖

2

+ λ· 1

N

N∑
i=1

‖(f(xie,Θ1)− x̃ie‖
2

=
1

N

N∑
i=1

‖(x̂iHR − x̃ic)‖
2

+ λ· 1

N

N∑
i=1

‖(x̂ie − x̃ie)‖
2

(14)

where Ltotal(xe, xc,Θ1,Θ2) represents the total loss of our
Dual-EEDN. In this paper, we set λ as 1 to get well perfor-
mance according to a number of experimental results with
different values of λ, which is demonstrated in Section III.
The weights are shared in the edge-EDN and color-EDN.

III. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of our model
on several datasets. Here, we first describe datasets used
for training and testing our model. Then the implementation
details of this work are given. To demonstrate the importance
of edge prior for image SR, we compare the performance

TABLE 3: Quantitative Comparisons of PSNR (dB) on BSD100 with Differ-
ent Values of λ. The Text Indicates the Best Performance.

λ 0.5 0.7 1.0 1.5 2 4
×2 31.68 31.69 31.70 31.68 31.66 31.62
×3 28.68 28.69 28.69 28.69 28.67 28.65
×4 27.12 27.12 27.14 27.14 27. 12 27.08

of Dual-EEDN with the color-EDN which can be seen as
the network without embedding edge information. Based on
the basic network settings, we investigate the different value
of λ to research an optimal trade-off between image fidelity
and texture details. Finally, the proposed method is compared
with several state-of-the-art.

A. DATASETS

Following the experimental setting in [28] , we use a training
dataset of 291 images, which includes 200 training images
from Berkeley Segmentation Dataset (BSD200) [36] and 91
images from Yang et al. [37]. For comparing our Dual-EEDN
with recent SR methods, we evaluate our model on four
widely used benchmarks: Set5 [38], Set14 [39], BSD100 [36]
and Urban100 [16] with the scaling factors of 2, 3, 4.
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TABLE 4: Quantitative Comparisons of State-of-the-art Methods in Term of PSNR (dB) with Three Scales (×2, ×3, ×4). Red Text Indicates The Best
Performance and Text Indicates the Second Best Performance.

Dataset Scale Bicubic A+ [17] SRF [20] SelfEx [16] SRCNN [25] FSRCNN [26] CSCN [44] AGST [18] Dual-EEDN

Set5
2 33.65 36.55 36.89 36.34 36.49 36.94 36.93 36.69 37.13
3 30.39 32.59 32.72 32.58 32.59 33.06 33.10 32.77 33.25
4 28.42 30.28 30.35 30.31 30.48 30.55 30.86 30.45 30.92

Set14
2 30.23 32.28 32.52 32.22 32.45 32.54 32.42 32.45 32.73
3 27.54 29.07 29.23 29.16 29.30 29.37 29.41 29.37 29.60
4 26.00 27.32 27.41 27.40 27.20 27.50 27.64 27.55 27.76

BSD100
2 29.56 31.22 31.16 31.18 31.36 31.51 31.24 31.38 31.70
3 27.21 28.29 28.22 28.29 28.41 28.65 28.54 28.45 28.69
4 25.96 26.82 26.75 26.84 26.91 26.97 26.87 26.88 27.14

Urban100
2 26.88 29.23 29.13 29.54 29.52 29.87 29.50 -/- 30.33
3 24.46 25.58 25.86 26.44 26.24 26.55 26.57 -/- 26.79
4 23.15 24.34 24.20 24.79 24.53 24.61 24.52 -/- 24.88

TABLE 5: Quantitative Comparisons of State-of-the-art Methods in Term of SSIM with Three Scales (×2, ×3, ×4). Red Text Indicates The Best Performance
and Text Indicates the Second Best Performance.

Dataset Scale Bicubic A+ [17] SRF [20] SelfEx [16] SRCNN [25] FSRCNN [26] CSCN [44] AGST [18] Dual-EEDN

Set5
2 0.930 0.954 0.954 0.954 0.952 0.955 0.957 0.955 0.958
3 0.868 0.909 0.906 0.909 0.909 0.913 0.911 0.910 0.917
4 0.810 0.860 0.853 0.862 0.863 0.865 0.875 0.861 0.876

Set14
2 0.869 0.906 0.904 0.903 0.904 0.908 0.909 0.905 0.911
3 0.774 0.819 0.817 0.820 0.815 0.823 0.825 0.822 0.828
4 0.702 0.749 0.745 0.752 0.750 0.753 0.754 0.752 0.758

BSD100
2 0.843 0.886 0.884 0.886 0.888 0.891 0.885 0. 888 0.893
3 0.739 0.784 0.781 0.784 0.786 0.789 0.789 0.783 0.794
4 0.668 0.709 0.705 0.711 0.710 0.714 0.710 0.710 0.720

Urban100
2 0.840 0.894 0.890 0.897 0.895 0.901 0.896 -/- 0.908
3 0.735 0.797 0.781 0.790 0.809 0.817 0.817 -/- 0.818
4 0.658 0.718 0.710 0.737 0.725 0.727 0.726 -/- 0.740

We evaluate the SR images with two popular metrics:
PSNR [40], SSIM [41]. Since the image SR reconstruction is
performed on the luminance component only in YCbCr color
space as similarly practice in previous methods, the PSNR
and SSIM are calculated on the Y-channel of images.

B. IMPLEMENTATION DETAILS
For data augmentation, the training images are rotated by
90◦, 180◦, 270◦ and flipped horizontally. Meanwhile, we
augment the training data with different scales, so that the
training images with different scales (×2, ×3, and ×4) are
also included in the training set. In the training phase, we
first detect the edge maps from LR images by Sobel extractor,
and the examples are shown in Fig. 3. The input LR images
are generated from original images and downsampled with
bicubic interpolation.

In this work, our proposed Dual-EEDN uses a framework
with 26 convolutional layers. As illustrated in Table 1, in
the FENet, 3 convolutional layers are adopted to extract the
hybrid features of LR color images and edge maps. Besides,
in edge-EDN and color-EDN, our two streams encoder-
decoder networks both consist of 5 convolutional layers and 5
deconvolutional layers. Then a convolutional layer is adopted

as ReconNet in each stream to reconstruct the HR edge con-
tents and color image contents. Finally, 1 convolutional layer
is utilized in the fusion unit to combine the edge contents
and color image contents for higher accuracy reconstruction.
In our training process, the training images are split into
31 × 31 patches with the stride of 21. We use Adam solver
[42] with a mini-batch size of 64. The weights are initialized
as described in [34]. Learning rate is initially set to 0.001 and
then decreased by a factor of 10 every 30 epochs. Momentum
and weight decay parameters are set to 0.9 and 0.0001,
respectively. We implement and train our Dual-EEDN using
Caffe platform [43] with 1 Titan X Pascal GPU.

C. IMPORTANCE OF EDGE PRIOR FOR IMAGE SR
In this work, considering that edge knowledge can con-
tribute to producing sharp edges and compensating the high-
frequency details of reconstructed HR images, the edge prior
is integrated into the Dual-EEDN and performs the image
SR problem. To validate the advance of edge prior for image
SR, we compare the performance of Dual-EEDN with color-
EDN, which can be seen as the network without embedding
edge information. Table 2 presents the objective quality of
the two methods on Set5 and BSD100. Besides, in Figure
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(a) Ground truth (PSNR/SSIM) (b) Bicubic (21.98/0.663) (c) A+ [17] (22.93/0.738) (d) SRF [20] (22.81/0.727)

(e) SelfEx [16] (22.97/0.744) (f) SRCNN [25] (22.97/0.739) (g) FSRCNN [26] (22.99/0.741) (h) Our(23.38/0.769)

FIGURE 7: Visual comparisons on the “148026” image from BSD100 [36] for ×3 scale. Line is straightened and sharpened in our result, whereas other
methods give blurry lines. Our result seems more visually pleasing.

4, we show visual comparisons on several images from the
benchmark datasets to demonstrate the importance of edge
prior for high-frequency details preserving. As shown in
Figure 4, by utilizing the edge prior for jointly reconstruction,
the Dual-EEDN can recover more high-frequency details
compared to the color-EDN, which validates the importance
of edge prior for image SR.

D. IMAGE FIDELITY AND TEXTURE DETAILS
TRADE-OFF
For reconstructing HR images with better visual quality, we
investigate a novel total loss function combining the edge
loss and color loss for the best trade-off of image fidelity
and edge information. According to (14), the parameter λ is
developed to balance the importance of color image contents
and edge details. The larger value of λ indicates that more
consideration of image edge feature and less consideration
of the of the main contents of HR images. We evaluate
the performance of our proposed Dual-EEDN trained with
different values of λ on BSD100. As shown in Table 3, the
λ = 0.7, 1.0, 1.5 give more superior performance but the λ
with larger value produce poorer results.

TABLE 6: Summary of PSNR (dB) and SSIM Results of Several Test
Images for ×3 Magnification. The Text Indicates the Best Performance.

Images DGNE Ours
Butterfly 27.06/0.890 29.48/0.936

Parrot 29.98/0.909 31.35/0.930
Girl 33.55/0.827 33.80/0.829
Bike 24.43/0.793 26.75/0.826
Hat 30.82/0.861 32.36/0.900

E. COMPARISONS WITH STATE-OF-THE-ART METHODS
We provide quantitative and qualitative comparisons with
several state-of-the-arts methods, which include, A+ [17],
SRF [19], SelfEx [16], SRCNN [25], FSRCNN [26], CSCN
[44] and AGST [18]. We provide a summary of quantitative
evaluation in Table 4 and Table 5, in which our method
achieve the best performance both on PSNR and SSIM.
Besides, in DGNE [5], multiview features and local spatial
neighbors of patches are explored to find a feature-spatial
manifold embedding for images. We compare our model to
DGNE on several images from DGNE, and the results are
illustrated in Table 6. To fully investigate how our proposed
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model perform in terms of visual quality, some promising re-
sults from several state-of-the-art methods with larger scales
on Set5 [38], Set14 [39], and Urban100 [16] are visualized in
Figure 5, 6, and 7.

F. RUNNING TIME
We evaluate the running time of our proposed model and
compare its efficiency with several state-of-the-art methods.
All running time of the methods are evaluated by their origi-
nal codes on the same machine: 3.4 GHz Intel i7 CPU (128G
RAM) and NVIDIA Titan X Pascal GPU. Figure 8 shows the
trade-off between the running time and performance on Set14
for ×4 SR. It is demonstrated that the speed of the proposed
Dual-EEDN is faster than all the existing methods except
FSRCNN but achieve PSNR gain of 0.26 dB compared to
FSRCNN.

FIGURE 8: The efficiency comparison between our proposed Dual-EEDN
and several state-of-the-art models. The results are evaluated on Set14
[39] with the scale factor ×4.

IV. CONCLUSION
In this paper, we proposed a novel dual-streams edge driven
encoder-decoder network for single image SR (Dual-EEDN).
Our framework utilizes edge contents and color contents to
reconstruct HR images with well image details. The edge
information is extracted from the color images to drive the
reconstruction of HR images. In Dual-EEDN, instead of
utilizing two sub-networks that learn edge information and
color image contents respectively, an optimized HR edge
maps are recovered by edge-EDN, then we impose color
stream based encoder-decoder network (color-EDN) to learn
color image contents. The reconstructed HR edge contents
are fused with color contents predicted from color-EDN
to recover HR images with much clearer texture details.
Extensive benchmark experiments and analysis have shown
that Dual-EEDN is a superior framework for single image
SR. Although our model has achieved very promising re-
sults for image SR, we will extend our framework to other
image restoration tasks, such as image denoising and JPEG
artifacts reduction and demonstrate the effectiveness of our
framework on real-world image restoration.
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